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Abstract

We give an overview of immersion in order to present the idea of embedding, then discuss Whit-
ney’s work on his weak immersion and strong embedding theorems as the main theorems of the
talk, drawing briefly on notions of transversality as presented by the previous speaker, rigorously
proving a weaker form of Whitney’s embedding theorem, and sketching out a result of a linear
bound for the minimum dimension of the real space in which a manifold of a given dimension can
be embedded. We touch briefly on knot-theoretic applications of embeddings, paying particular
attention to alternative arguments for the isotopy of all embeddings of S1 into R4, before finally
addressing a recent preliminary examination problem involving embeddings, surveying recent work
in the field, and touching on the importance of embedding to two interesting open problems.

Introduction

In this survey, we will be discussing the concept of immersion as a lead-in to that of embedding, and
then finally prove the Whitney embedding theorem for compact manifolds. The Whitney embed-
ding theorem says that any smooth, differentiable real manifold with dimension m can be embedded
in Rn. The concepts of immersion and embedding, while natural, were only recently fully formal-
ized, with Whitney’s work finishing as late as 1944. Nevertheless, the concept of an embedding
in particular formalizes the intuitive notion of an inclusion map from one smoothly differentiable
manifold into another.

For simplicity’s sake, domains will generally be compact, smoothly differentiable real manifolds,
and the codomains of all maps will be some Rn, since we are concerned primarily with classical
embedding theory, rather than hyperbolic, complex, or Riemannian embeddings, all of which are
mostly beyond the scope of this survey.

Immersion

Let M,N be differentiable manifolds. Then an immersion is a differentiable function f : M → N
whose derivative is everywhere injective. That is, for each point in the domain, there exists some
neighborhood of that point in the domain for which locally the image of the neighborhood looks
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locally like an inclusion into the codomain. Alternatively, an immersion is a map that is injective on
the tangent spaces, that is, Dpf : TpM ↪→ Tf(p)N for all points p ∈M . This means that the image
of the manifold under the map can have transverse intersections, since at any such intersection,
the tangent spaces of the intersecting parts of the image of the manifold will be distinct, by the
definition of transversality. Two instances of immersions can be found below.

Figure 1: An immersion of an open interval into R2.

Figure 2: Another immersion, this time of the Klein bottle into R3.

Topological Embedding

We move for a moment to topology, which has more relaxed standards on spaces than differential
geometry does. Let M,N be topological spaces. Then f : M → N is a topological embedding if f
is an injective continuous map which yields a homeomorphism between M and f(M), where f(M)
inherits the subspace topology as possessed by N . If we have such an f , then we are able to treat
M as a subspace of N , in some sense. What’s more, if f is strictly open or closed, then it must be
a topological embedding. This is however merely a sufficient condition, as it is possible for f(M)
not to be strictly open or closed as a subspace of N , in which case f can’t possibly be an open or
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closed homeomorphism. Below is one possible embedding of S1 into R2, a hexagon. We note that
we don’t need for the map to be smooth or differentiable, or have distinct tangent spaces, merely
that the map be homeomorphically injective.

Figure 3: One possible embedding of S1 into R2.

Embedding

An immersion on a compact manifold which is also injective is called an embedding. That is, we
require that f : M ↪→ N in addition to Dpf : TpM ↪→ Tf(p)N for all points p ∈ M . Essentially,
an embedding is an immersion where we no longer allow self-intersections. Thus the image of an
embedding is differentiably homeomorphic to its domain, and in particular must be a submanifold,
since the diffeomorphic bijection of the map restricted to its own image also defines an atlas on the
image when composed with the atlas of the original manifold.

This is a particularly powerful statement about the relationship between two manifolds: an
embedding between two manifolds immediately induces an isomorphism between the domain and
the image, which tells us a lot about the structure of the codomain. In particular, we know that
any immersion which is also a topological embedding is an embedding in the differential geometric
sense. Below is one possible embedding of S2 into R3; note that since we are dealing merely with
differential geometry and nothing stricter that merely being smooth and having no self-intersections
suffices.

Isometric Embeddings

We now consider a slightly stricter notion yet than that of the simple differential-geometric em-
bedding: that of the isometric embedding, which belongs properly to Riemannian geometry. Let

3



Figure 4: One possible embedding of S2 into R3.

(M, g), (N,h) be Riemannian manifolds, that is, manifolds equipped with an inner product defined
on the tangent space varying smoothly over the points of the manifold. Then an isometric em-
bedding is a smooth embedding f : M → N which preserves the metric of M on f(M) ⊂ N ,
that is, g = f ◦ h, so that g is equal to the pullback of h by f . Stated more explicitly, for every
pair of tangent vectors v, w ∈ Tx(M), we will have g(v, w) = h(df(v), df(w)). In effect we now
add the additional requirement that lengths and angles be preserved under the embedding, where
naturally we must have a domain and codomain where lengths and angles are meaningful. Most
of these embeddings can be viewed as rigid transformations. We can, of course, define analogously
the concept of an isometric immersion as paralleling the definition of an immersion.

The Whitney Embedding Theorems

In order to prove the main theorem, we must first do some groundwork.

The Whitney Embedding Theorem: Let M be a manifold. Then there exists some
integer N such that f : M → RN is an embedding.

Let Ui, φi be an open cover of M with associated maps, with finite subcover Vi of cardinality k.
Since the Vi have images that are open balls, we can easily embed each one into some RN , where
N is the same across each element of the subcover. Finally, as presented in the text, we can use
bump functions fi subordinate to the cover and define maps:

φ̃i(x) =

{
φi(x)fi(x), x ∈ Vi
0, x /∈ Vi.

(1)

This will be a set of maps from M to Rdim M , since the fi(x) are scalar, and the φi(x) are maps
from open balls in M to open balls in Rdim M . Now we can define a map pasting these all together,
defined as follows:

Φ(x) : M → Rk(dim M+1), x 7→ (φ̃1(x), φ̃2(x), ..., φ̃k(x), f1(x), f2(x), ..., fk(x)). (2)
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We can see that this is injective. Define Fi(x) = (f1(x), f2(x), ..., fk(x), and let x 6= x′,
Φ(x) = Φ(x′). Then since the fi(x) are not everywhere 0, and Φ(x) = Φ(x′), we must also have
Fi(x) = Fi(x

′) and thus for some i, fi(x) = fi(x
′) 6= 0, so that x, x′ ∈ Vi. But then φi(x) = φi(x

′)
for all i, so that because the φi are embeddings, x = x′, a contradiction. Thus Φ is injective.

It remains to show that DΦ is also injective. Clearly, we can calculate using the product rule
that

DΦ(x) = Df1(x)φ1(x) +Dφ1(x)f1(x), ..., Dfk(x)φk(x) +Dφk(x)fk(x), Df1(x), ..., Dfk(x), (3)

which takes points v ∈ TxM to vectors in (Rdim M )⊕k) × R⊕k. But this vector can’t be zero,
since notevery fi(x) is 0, and the φi are embeddings, so that DΦ is injective. This means that Φ
is at least an immersion, and since M is compact, and since Φ is a bijection when restricted to its
image, and since any closed K ⊂M is compact, Φ(K) must also be compact and thus closed. This
completes the proof.

The Weak Whitney Embedding Theorem: Let M be a manifold of dimension m.
Then there exists an embedding f : M → R2m+1.

We start with an embedding Φ : M → RN as given by the previous lemma; assume that
N > 2m + 1, for m = dim M . Then we can show that for all such N that by projecting to a
hyperplane, we can get an embedding to RN−1. A single vector v ∈ SN−1 defines a hyperplane in
RN as the orthogonal vector; define

Pv : RN → RN−1

be the obvious orthogonal projection to the hyperplane. Then it suffices to show that the set of all
v for which Φv = Pv ◦Φ fails to be an embedding is a set of measure 0, so that it must be possible
to choose a v for which Φv is, in fact, an embedding.

By the definition of an embedding, Φv fails to be an embedding if it fails to be injective or DΦv

fails to be injective. We consider these two cases separately. First, let g : (M ×M)\∆M → SN−1

be given by

g(x1, x2) =
Φ(x2)− Φ(x1)

||Φ(x2)− Φ(x1)||
, (4)

where ∆M is the diagonal. Since g is the map taking pairs of points in the manifold to the
vector whose defined orthogonal plane causes their images under Φv to be identical, Φv fails to be
injective whenever v is in the image of g. However, g maps a 2m-dimensional manifold into an
N -dimensional manifold, so that the image of g has measure 0 whenever N > 2m+ 1.

Now we analyze the second condition under which Φv might fail to be an embedding. We will
analyze this condition under a specific map U, φ, since it is a local condition. DΦv will fail to be
injective precisely when v is in the normalized image of Φ ◦ φ : φ(U) ⊂ Rm → RN , since if it is,
there will be lines in M traveling along the v direction, which will then all be taken to a single
point under Φv. Thus we have a map

D(Φ ◦ φ−1)

||D(Φ ◦ φ−1)||
: U × Sm−1 → SN−1, (5)
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which has measure 0 as long as m+ (m− 1) < N − 1, which is true, since this is a less restrictive
condition than 2m < N − 1 above. Thus Φv fails to be an embedding only on a set of v of only
measure 0, so that we can pick some v for which it is, and N = 2n+ 1.

The Strong Whitney Embedding Theorem: Let M be a manifold of dimension m.
Then there exists an embedding f : M → R2m.

First, we note that if we allow Φ to be an immersion rather than an embedding, we can relax the
stricter requirement of injectivity of the map, so that we have N = 2m. This results in an immersion
Φv : M → R2m with transverse self-intersections. First, we consider the more general case, where
m ≥ 3, for reasons that will shortly become clear. Recall that we have transverse self-intersections
in the immersed image. A completely rigorous proof is beyond the reach of this survey, so we will
merely give a sketch here. In essence, what we need to do is apply purely local moves in order to
remove transverse self-intersections. We can do this by introducing another transverse intersection.
This having been done, we construct a simple closed curve connecting the two, which will bound
a disc in R2m, since R2m is simply connected. Finally, we isotope the simple closed curve through
itself through a one-parameter family of immersions to eliminate the singularities, resulting in an
embedding.

Finally, we check all manifolds for m ≤ 2. This is trivial for dimension 0, and the only compact
manifold of dimension 1 is S1, which also trivially embeds into R2. For 2-manifolds, we know that
we can classify these as all being S2, a connected sum of tori, or a connect sum of copies of RP2, so
that it suffices to show this for S2, T 2, and RP2. S2, T 2 trivially embed into R3, and because RP2

is nonorientable, it can’t be embedded in R3, and can in R4 at minimum.
Finally, we note that this boundary is sharp among linear boundaries, since, for instance, as

above, RP2 embeds only in R4.

Embeddings and Knot Theory

The concept of embedding is vital in knot theory in particular, where we define knots as embed-
dings f : S1 ↪→ R3, in order to match the alternative notion of a knot as the canonical embedding
g : S1 → R3 given by t 7→ (cos(t), sin(t), 0), where we recall that S1 is defined as R/Z, which we
then allow to isotope through itself until we reach another embedding.

We briefly take a different approach to showing any two embeddings of a 1-manifold into R4

are isotopic. Let K be a knot embedded in R3 ( R4 without loss of generality. Then for each
pair of adjacent crossings of K in which a strand of the knot does not pass under or over the other
strands of the knot, we can remove the crossings in pairs. In this way, we can reduce the knot to
an unknot. Similarly, by reversing the isotopy taking any knot in R4 to the unknot, we can then
convert this unknot to an arbitrary knot. Then since knots are the only embeddings of S1 in R4,
every embedding of S1 in Rn for n ≥ 4 must be isotopic.
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Examples of Uses of Embedding

The concept of an embedding has appeared implicitly on multiple of the geometry and topology
preliminary examinations, but only once recently in explicit use. From the Spring 2012 Smooth
Manifolds Preliminary Examination, Question 2:

Let P ⊂ R3 be a finite set. Show that there exists a smooth embedding f : S2 → R3 such that
P ⊂ f(S2). Then show that the corresponding statement for countably infinite sets is false.

A sketch of a proof: We know that embeddings are generic; that is, it is always possible to
perturb an embedding, deforming or moving it smoothly by a small amount, and get another
embedding with the same domain and codomain, so that perturbing it a finite number of times
preserves the embedding. However, we can construct countably infinite sets that can’t be in any
embedding, since Q3 ⊂ R3 is an everywhere dense countable set. We can thus take some strict
immersion, that is, an immersion that isn’t an embedding, and consider the set of points in the
image of the map with all rational coordinates; since the image is dense in the strict immersion,
just as Q3 is dense in R3, it can’t be a subset of any embedding, since such an embedding would
have to contain a self-intersection, which is impossible.

Recent Developments, Open Problems, and Further Notes

A current open problem is that of which 3-manifolds can be embedded in R4, and of whether S3

embedded in R4 will always bound a 4-ball, and in general of which m-manifolds can be embedded
in R2m. However, relatively little classical work has been done in the field since around 1970, since,
as previously stated, the linear boundary is a sharp one. That said, the idea of embedding has
been generalized numerous times in the study of hyperbolic manifolds, braid groups, and other
mathematical structures. In some sense, whenever one mathematical object can contain a copy of
another, we can stretch the notion of the embedding to cover such cases, encompassing such ideas
as parts of braids, subgroups, and, of course, differential-geometric embeddings into spaces that
aren’t Euclidean, the most interesting examples being those of complex and hyperbolic codomains.

Less recently, the Nash Embedding Theorem is a statement in Riemannian geometry analogous
to the Whitney embedding theorems’ role in differential geometry, saying that every Riemannian
manifold can be isometrically embedded in Rm+1, where the embedding is in C1 and ε-close to
an immersion into the same Euclidean space. In some sense this is a further refinement of the
Whitney embedding theorems when restricted to extremely well-behaved manifolds, just as isomet-
ric embedding is a refinement of embedding when restricted to those same extremely well-behaved
manifolds.

Relating to knot theory, a still-open problem is that of the slice-ribbon conjecture. A ribbon
knot is an embedding of S1 in R3 that bounds an immersion of B2 in R3, that is, one which bounds
an immersed disc in R3.

A slice knot is an embedding of S1 in R3 that bounds an embedding of B2 in R4, that is, it
bounds an embedded disc in R4. The open question is, is every slice knot ribbon? We can give
an elementary proof that every ribbon knot is slice: given an immersed disc in R3, we can use the
additional dimension of freedom to isotope away all of the transverse self-intersections 4-above the
hyperplane of the inclusion of R3 into R4, so that the disc is now immersed.
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Figure 5: A ribbon knot. Note that transverse intersections. By an elementary theorem, it is also
slice.

Figure 6: Smoothly isotoping away the transverse intersections of the immersed disc to embed.

On the other hand, as we can see both from an intuitive appreciation of the problem and from
the idea of orthogonal projection of an embedding that we have used in the the Weak Whitney
Embedding theorem, although every orthogonal projection of the embedded disc down to R3 results
in an immersion, such projections will likely not result in embeddings. Further, the Whitney trick
doesn’t work in R3,R4, due to a lack of degrees of freedom, so we can’t necessarily simply isotope
the resulting self-intersections away in R3.
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